
29

is preserved even after the obfuscation
transformation.

•	 Tamper-proofing and tamper-detection
protect the integrity of the code. This
implies code transformations which add
integrity checks that continuously verify
the state or functionality of the code.

•	 Tool-targeted or environment-targeted
transformations take advantage of weak-
nesses in tools or execution environ-
ments to prevent analysis, e.g. anti-de-
bugging, anti-sandboxing.

•	 Watermarking adds a distinctive pattern
inside the code, which is hard to detect
or remove by attackers, but can be easi-
ly recovered by the software developer.
This pattern is useful to track unauthor-
ized copies of code, that are used by com-
petitors.

1. Introduction

Software protection focuses on defending
software applications against attackers who
have access to the (binary) code of the ap-
plication. Two common examples of such
attackers are malicious end-users of (1)
websites, who can inspect or tamper with
the JavaScript code sent by the website or
(2) games, who can inspect or tamper with
the machine code of the game executable.
These malicious end-users are called man-
at-the-end (MATE) attackers, because they
are recipients of the software applications
and they control the execution environ-
ment of the application.

Software developers know that some of the
end-users of their software may be MATE
attackers, who try to steal their intellectual
property or try to change the intended be-
havior of the application, e.g. such that they
no longer need to pay a license or subscrip-
tion fee in order to use the software. There-
fore, many developers employ software
protection techniques in order to prevent
or detect MATE attackers who want to in-
spect or tamper with the software. Software
protection, sometimes also called code-hard-
ening includes dozens of code transforma-
tion techniques which can be grouped in
the following categories:
•	 Obfuscation transforms the syntax of

the code such that the result is harder to
analyze. The functionality of the code

Sebastian Banescu
Evaluating Software Protection against Automated Reverse
Engineering Attacks

Sebastian Banescu is an IT Security Specialist
at BMW AG in Munich, where he is involved
in various projects regarding the security of the
connected car against remote attackers, tunning
garages and malicious car owners.
In July 2017, he received his PhD, with distinc-
tion, at the Technical University of Munich un-
der the supervision of Prof. Alexander Pretschner.
The topic of his PhD thesis was to characterize
the strength of software obfuscation against au-
tomated man-at-the-end attackers.
The end goal of his work was to develop a frame-
work that allows software defenders to easily
choose which software protections to employ in
order to protect their software against malicious
end-users.
Before moving to Germany in 2013, Dr. Banescu,
received a MSc. in Computer Science and Engi-
neering, “cum laude”, from Eindhoven Univer-
sity of Technology in the Netherlands, and a
BSc. in Computer Science and Engineering, from
the Technical University of Cluj-Napoca in
Romania.

Forschungsbeitrag zu
Software Schutz

Software protection focuses on defending software applications against ma-
licious end-users, also called man-at-the-end (MATE) attackers, who have
access to the (binary) code of the application and its execution environment.
The biggest problem of software developers who want to protect their software,
is that there are dozens of software protection transformations and it is not
clear how much effort the attacker will need if certain transformations are
combined.
This paper proposes a framework for quantifying the effort needed by MATE at-
tackers against a given protected software. Our framework helps software devel-
opers identify software features which are crucial for MATE attacks and which
can be transformed by software protection in such a way to make the attack
more difficult. These features are then used to train regression models, which
predict how much time the MATE attack will take on a given protected software.

while (a ! = b) goto B1

if (a > b) goto B2return a

b = b – a
goto B0

a = a – b
goto B0

B0:

B1:

B2: B3:

B4:

a = a – b
next = 0

b = b – a
next = 0return a

next = 0

switch (next)

while (1)

B0: B1:

B2:
B3: B4:

if (a ! = b)
next = 1

else
next = 2

if (a > b)
next = 3

else
next = 4

30 Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 31Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks

Moreover, these transformations can be
applied successively to a given software
application in various orders, practically
entailing an unlimited number of differ-
ent versions of that application, which are
syntactically different, but functionally
equivalent. In this section, we only describe
a subset of some of the most popular obfus-
cation transformations, which are used in
the experiments presented Sections 4:
•	 Encode literals (EncL) takes constant

numbers or strings and encodes them
into other data values, which are con-
verted back to the original value during
runtime, by one or more decoding func-
tions. For example a constant string val-
ue is split into separately stored ASCII
values and each value is XOR-ed with a
constant value. At runtime the reverse
process is applied to each of the encoded
characters, in order to obtain the origi-
nal string.

•	 Opaque predicates (AddO) are complex
boolean expressions, which are always
true or always false regardless of the val-
ue of the variables. However, for a MATE

attacker it is difficult to determine that
an expression is an opaque predicate. For
instance, x2 + x = 0 mod 2 is always true,
regardless of the value of x, because if x
is even then x2 + x is even and if x is odd,
then x2 + x is still even. Opaque predi-
cates are generally used in conditional
statements, where the branch that is nev-
er taken is filled with dead code, which
cannot be removed by the compiler.
Moreover, opaque predicates can also be
updated during runtime (UpdO) to frus-
trate the attacker.

•	 Encode arithmetic (EncA) also called
mixed Boolean-arithmetic (MBA) takes
simple arithmetic operations (e.g. addi-
tion, subtraction, multiplication, divi-
sion) or simple Boolean operations (e.g.
AND, OR, NOR, XOR) involving multiple
variables and transforms them into func-
tionally equivalent complex expressions
consisting of multiple arithmetic and
Boolean operations. For example, x + y
may be transformed into 2(x   y) – (x + y).
Moreover, such transformations may
be applied multiple times successively,

The top of Figure 1 shows that software
protection takes a program P as input and
outputs a protected program P’ having the
same semantics and protected data and al-
gorithms. If the software is not protected
well enough, MATE attackers will be able to
reverse engineer program P’ (bottom of Fig-
ure 1) and achieve their end-goal of extract-
ing secrets or tampering with the software.
Given enough time and resources a MATE
attacker will eventually be able to reverse
engineer any protected software, however,
software developers only want to raise the
bar for the MATE attacker such that the task
of reverse engineering is not economically
attractive anymore.

For example if the resources needed to by-
pass a license check for a game costs 100
times more than the license fee, then an
attacker is more likely to buy the license
than reverse engineer the game executable.
The biggest problem of software developers
is that there are dozens of software protec-
tion transformations and it is not clear how
much effort the attacker will need to invest

in reversing the software if certain transfor-
mations are combined.

This paper proposes a framework for quan-
tifying the effort needed by MATE attack-
ers against a given protected software. Our
framework helps software developers to
identify software features which are crucial
for MATE attacks and which must be trans-
formed by software protection in such a way
to make the attack more difficult. The paper
also describes a use-case where the attacker
employs a state-of-the-art program analy-
sis technique called symbolic execution to
extract license keys from obfuscated pro-
grams. These features are then used to train
machine learning models, which are able to
predict how much time the attack based on
symbolic execution will take on a given pro-
tected software.

2. Software Protection Transformations

There are dozens of software protection
transformations published in literature[5].

Figure 1:

Input and output of

software protection and

reverse engineering.

Software
Protection

Reverse
Engineering

P

secret data
secret algorithm

P'
PROTEDTED

(secret data,
secret algorithm)

Figure 2:

Control-Flow-Flattening

example for a function

computing the greatest

common divisor of two

integers.

32 Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 33Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks

which leads to a highly complex expres-
sion, which is difficult for an attacker to
simplify.

•	 Control-flow flattening (Flat) takes each
basic block of a program and puts them
into different case-clauses of a large
switch-statement. Figure 2 illustrates flat-
tening applied on a function computing
the greatest common divisor of two inte-
gers a and b (on the left). After transfor-
mation, the switch-statement (right part of
Figure 2) is dependent on a control varia-
ble (called next), which is set accordingly
inside each of the case-clauses, such that
the original control flow of the program
is preserved.

•	 Virtualization obfuscation (Virt) takes
a sequence of one or more instructions
and converts it into a new instruction
having a random opcode and operands.
Doing this mapping until all the code of
a program is covered, gives rise to a new
instruction set architecture (ISA). After-
wards, the code of the input program is
translated to the new ISA and stored as
bytecode. An emulator which maps the
bytecode instructions back to native in-
structions is also generated. The obfus-
cated program consists of the bytecode
and the emulator.

The papers which introduce these obfus-
cation transformations, provide ad-hoc
evaluations of their strength. However, the
evaluations often refer to different MATE

attackers, i.e. having different goals and
employing different program analysis tech-
niques. In this paper we introduce a frame-
work to compare differently protected pro-
grams, including programs protected using
multiple layers of obfuscation, from the
point of view of the same MATE attacker.

3. Software Protection Evaluation
Framework

Our framework (first presented in [4]) is built
on the premise that the strength of software
protection is proportional to the effort the
MATE attacker must spend breaking the
protected code. In the following we present
the steps of our general framework for char-
acterizing the strength of software protec-
tion:
1.	 Survey different published approaches

for achieving the goal of a MATE at-
tacker.

2.	 Model all these approaches as one large
attack net [6], which is a Petri-net de-
picting the different steps of each at-
tack. The input of the attack net is the
protected program and the output is
the information needed by the MATE
attacker, e.g. the secret key hidden in-
side the obfuscated program.

3.	 Select the best overall attack from the
attack-net by empirical observations.
This is facilitated by Petri-nets which
allow running all attacks in parallel.

4.	 Model the steps of the best attack (rep-
resented as transitions of the Petri-net)
as search problems. This enables the
identification of the key parameters
of the search, i.e. the most important
parameters that affect the speed of the
search.

5.	 Map the search parameters to code fea-
tures of the program entered as input
to the attack net. These are the features
that must be changed by software pro-
tection transformations, in order to
make MATE attacks slower.

In the following subsections we describe
these 5 steps in more detail using the run-
ning example of bypassing license checks
in protected programs.

3.1 Modeling MATE Attacks as
Attack Nets

Each MATE attack is split into one or more
subsequent actions or steps, which are
called transitions (represented as rectangles)
inside an attack-net (Petri-net) [6]. Each tran-
sition has at least one input and one output
place (represented as circles), which hold the
input and output information, respective-
ly. Two transitions are linked by a common
place if the output of the former transition
is the input of the latter transition. Note
that multiple transitions may share the
same input or output place, if their input,
respectively output have the same type. An

attack-net starts with an input place (also
called a source), which holds the program
that is under attack. An attack-net ends
with an output place (also called a sink),
which holds the information representing
the goal of the MATE attacker.

For the purpose of illustrating the steps of
our framework enumerated above, we con-
sider the MATE attack goal of bypassing the
license check inside a software application.
Such a check is meant to enforce the pur-
chase of a license key if users want to use all
features of a certain software. During our
literature survey we have identified 5 differ-
ent MATE attack techniques to achieve this
goal, which are illustrated inside the at-
tack-net from Figure 3 and described in the
following:
1.	 The first attack is to guess the right li-

cense key via Random Testing. This at-
tack may be very expensive if the range
of the key is large, because all possible
keys need to be enumerated.

2.	 An alternative attack (described in Sec-
tion 3.2), is to make the input for the
license key symbolic and then employ
symbolic execution and SMT-/SAT-solv-
ers in order to find the license key.

3.	 One may also find a license key by
searching for hard-coded strings inside
the binary and then trying these val-
ues as license key inputs. However this
attack will fail if the license key is not
stored as a printable string or as soon as

34 Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 35Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks

any string obfuscation transformation
(e.g. encode literals) is applied.

4.	 Instead of finding the license key an
attacker could try to find and patch
all the license checks by applying pat-
tern matching on the disassembly of
the program, using the assembly code
representation of the license check.
However, this attack will fail as soon as
any obfuscation that breaks the code
pattern is applied (e.g. virtualization
obfuscation).

5.	 To be more robust against obfusca-
tion, the MATE attacker could use taint
analysis to identify the license checks.
Once the checks are found, they need
to be disabled via patching, which is
difficult to automate, due to the mul-
titude of ways in which a check can be
represented in obfuscated code.

Note that we do not claim that these are all
possible MATE attacks against bypassing li-
cense checks. However, these are the tech-

niques we uncovered in the literature. If ad-
ditional attacks are uncovered in the future
they can easily be added to the attack-net
from Figure 3.

3.2 Symbolic Execution as Best MATE
Attack

Random testing, the top-most attack in
Figure 3, does not scale if the license key is
long and contains alphanumeric charac-
ters. Symbolic execution has problems if
the license check is a cryptographically se-
cure hash function, because the underlying
SMT solvers cannot break such hash func-
tions. However, such functions are easy to
find via pattern matching and the they can
be patched out. From the short description
provided in the previous enumeration of
attacks, we can also notice that the third
and fourth attacks have significant weak-
nesses when it comes to analyzing obfus-

cated code. The last attack based on taint
analysis is also problematic due to the fact
that it does not scale when a large number
of checks are used.

Using self-developed or existing tools for
each of these 5 MATE attacks, we empir-
ically experimented with a small set of
manually developed programs containing
license checks. Based on these preliminary
experiments and the previous arguments,
we determined that the second attack from
Figure 3, i.e. the attack based on symbolic
execution is the fastest and most resilient
to obfuscation. In the following we describe
how symbolic execution works on a given
program written in C.

The program in Figure 4 consists of a single
main function, which takes 3 command
line arguments as inputs and assigns them
to variables a, b and c. We mark these 3 var-
iables as symbolic, which means that they

no longer represent concrete values, but the
range of values corresponding to their type.
As a symbolic value is processed by program
instructions, path constraints are added to
it. The symbolic execution tree correspond-
ing to this program is illustrated in Figure 5.
Symbolic execution forks whenever there
is a branch inside the code, which depends
on at least one symbolic variable. At every
fork, the state of the program is cloned to-
gether with the path constraints. The true
branch state is appended with the con-
straint of the condition evaluating to true,
while the other branch with the constraint
evaluating to false. After such forks the path
constraints are checked by an SMT solver,
to verify if there is any possible assignment
of concrete values to the symbolic variables,
which could satisfy the path constraints.
If so, the path is continued, otherwise it is
discarded. Examples of path constraints are
shown inside rectangles at the bottom of
Figure 5. Note that values that satisfy these

Random Testing

Mark Input
Symbolic

String Pattern Matching

Code Pattern Matching

Disassemble

Information-Flow Analysis

Symbolic
Execution

SMT-/SAT-
Solving

Try String as License Key

Patch Licence
Check in Code

Binary
Machine Code

Annotated Code

Path
Constraint

List of Hard-coded Strings

Assembly
 Code

Location of
Checks

Patched
Binary Code

Licence
Key

Figure 3:

Attack-net containing

MATE attacks for

bypassing license checks.

	 1 	 int main (int ac , char * av []) {
	 2 		 int a = atoi (av [1]) ;
	 3 		 int b = atoi (av [2]) ;
	 4 		 int c = atoi (av [3]) ;
	 5
	 6		 if (a > b)
	 7 			 a = a - b
	 8
	 9		 if (b < 1) {
	10	 		 if (c != a) {
	11 				 c = a + b
	12 			 }
	13 			 b = 1;
	14 		 }
	15	
	16 		 return 0;
	17 	 }

Figure 4 (right):

Random program.

Figure 5 (left):

Symbolic execution tree

with path constraints.

T

T

TT

T

F

F

FF

F

a > b

b < 1

c ! = a b = 1

c = a + b b = 1

b = 1

a = a – b

b < 1

a <= b ^ b > 1
b = 1c ! = a

c = a + b b = 1

b = 1

a <= b ^ b < 1 ^ c = a

a <= b ^ b < 1 ^ c ! = a

a > b ^ b > 1

a > b ^ b < 1 ^ c = a – b

a > b ^ b < 1 ^ c ! = a – b Path Constraints

represents different states. From any state,
one or more actions are possible to be per-
formed on that state, which leads to a differ-
ent state. The first state given in the search
problem specification is called the initial state
and it represents the root of the search tree.
Each action taken in a certain state leads
to a successor state in the search tree. As
the search algorithm execution proceeds, the
search tree keeps expanding, until a goal
state is reached. The leafs of the search tree
constitute the fringe. The size of the search
tree indicates the number of visited states.
Hence the cost of the search algorithm
execution is proportional to the size of
the search tree. The size of the search tree
strongly depends on the chosen search strat-
egy and its associated heuristic. Cost can be
measured in terms of space or time.

The cost of a MATE attack is the sum of the
search problem efforts of solving each step
of the attack. Therefore, the strength of a
software protection transformation can be
quantified w.r.t. the effort increase of the
MATE attack before and after that trans-
formation is applied. Another advantage of
formulating MATE attacks as search prob-
lems is that one obtains the code features
which represent complexity factors for the
search algorithms. By knowing these fea-
tures, the software developer can apply the
software protection transformation which
targets exactly those features in order to
slow down MATE attacks. For instance, in

our running example of bypassing a license
check via symbolic execution, the relevant
code features are:
•	 The number of branches and loops de-

pending on symbolic variables, because
it determines the branching factor of the
search tree.

•	 The number and complexity of Boolean
and arithmetic operations, because it
determines the complexity of the SMT
queries corresponding to the path con-
straints.

•	 The data types of symbolic variables, be-
cause larger types increase the number of
possible assignments made by the SMT
solver to these variables.

4. Evaluation

To confirm that our approach has identified
the most important code features, we follow
the 4-step process depicted in Figure 7:
1.	 Generate a representative set of pro-

tected programs with variable values
for all of the code features.

2.	 Record time needed by the best MATE
attack and extract the features from the
programs.

3.	 Select only the relevant features.
4.	 Build a regression model for predicting

the time needed by the MATE attack
against any given program.

In the following sections we describe each
of these steps in more detail. Several of the

constraints would lead the execution along
the corresponding path.

If we consider that a license check is also a
conditional statement dependent on the
value passed as input as the license key,
then symbolic execution will be able to find
the correct value of the license key if we
mark the license key input as symbolic. The
symbolic execution will explore all execu-
tion paths and one of these paths contains
the logic for the license check. The result of
the SMT solver for that path is equal to the
correct license key value. This attack was
first presented by Banescu et al.[3]

3.3 Modeling MATE Attack Steps as
Search Problems

The different steps of an attack (i.e. transi-
tions of an attack net), can be formulated
as search problems. The advantage of do-
ing this is that there exists a vast literature
regarding how to solve and quantify the
effort of search problems and search algo-
rithms, respectively.

The anatomy of a search problem and a
search algorithm is represented in Figure 6.
The fundamental part is the data structure
on which the search is executing (e.g. an
array of bytes representing machine code, a
graph representing the control-flow graph),
shown in the top-left corner. During search
these data structures are annotated to show
the state of the search. Therefore, the same
data structure with different annotations,

36 Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 37Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks

Data
Structure Heuristic Search

Strategy
Search Algorithm

Execution

- cutoff: Cost

- searchCost(): Cost

Search Problem Specitication

- initialState: State

- goalTest(State):bool
- successor(State):Graph

- stepCost(State, Action): Cost

Cost

Space Time

uses

uses

nodes

fringe

search
Tree

arcs

Graph

State

Action

1
0..1

0..1
1

1

Figure 6:

Search Model.

38 Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 39Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks

experiments described in the following
sections are presented in more detail in [2].

4.1 Generating and Protecting Programs

For the purpose of creating a large dataset
of programs, we have developed a C code
generator, which was used to generate over
4500 random C functions having different
code feature values. All of the generated
programs mimic the structure of a license
checker such that we can apply our MATE
attack based on symbolic execution on each
of these programs. However, before attack-
ing these programs, we apply the 5 software
protection transformations described in
Section 2 and combinations of each pair
of these transformations. Some transfor-
mations are applied twice in order to check
the increase in attacker effort. In total we
obtained 30 syntactically different, but se-
mantically equivalent variants of each of
the more than 4500 C programs.

4.2 Attacking Protected Programs

When applying the symbolic execution at-
tack to each of the protected program ver-
sions we noticed that it was successful on
all program variants [1]. However, the attack
execution times varied greatly as a func-
tion of the obfuscation transformations
which were applied to protect the program.

Step 1

Step 2

Step 3

Step 4

Dataset of
Original Programs

Obfuscation Tool
(Protection)

Protected Programs

Software Feature
Extraction Tool

Deobfuscation Tool
(Attack)

Program Features Attack Times

Feature Selection
Algorithm

Set of Relevant Features

Regression Algorithm

Deobfuscator Prediction
Model

1

5
10

50
100

500
1000

5000

Orig
EncL

AddO4−
UpdO

AddO4

EncL −
AddO16

AddO16
−UpdO

AddO16

AddO16
−EncL

Flat−AddO16

Virt
−EncL

Virt

EncL −Virt

EncA
−EncL

EncA

EncL −EncA

Virt
−AddO16

EncA
−AddO16

AddO16
−Virt

Flat−Virt

Virt
−EncA

Flat−EncL

EncL −Flat
Flat

Flat x
2

Flat−EncA

EncA
−Virt

Virt
−Flat

AddO16
−Flat

EncA
−Flat

AddO16
−EncA

Virt
 x2

0

25

50

75

100

125

150Mean program size increase (factor)
Mean KLEE slowdown (factor)
% Time waiting for solver
Mean number of added queries (factor)
Mean query size increase (factor)

Figure 8 uses circles to show the average
slowdown factor of the symbolic execu-
tion based attack (y-axis) on all programs
obfuscated using different transforma-
tions and combinations thereof (x-axis).
The left-most tick mark on the x-axis is the
original program. The other tick marks
represent obfuscated programs with the
transformations presented in Section 2.
Figure 8 also shows the average increase
in file size (plus signs), the percentage of
attack execution time spent waiting for
the SMT solver (solid line and right y-axis
scale), the average number of queries sent
to the SMT solver (dashed line) and the av-
erage increase in query size (dotted line).
The most important observations from
Figure 8 are that:

•	 Contrary to expectations applying En-
code Literals and Opaque Predicates
alone, do not affect any of the code fea-
tures we identified by our framework.
This is because the dynamic nature of
symbolic execution is able to bypass
these software protection transforma-
tions.

•	 Virtualization increases the number of
instructions, hence the number of opera-
tions during program execution.

•	 Control-Flow Flattening increases the
number of branches, hence the number
of queries sent to the SMT solver, by in-
troducing more branches.

•	 Encode literals increases the size, hence
the complexity of the queries sent to the
SMT solver.

Figure 7 (S. 38):

Overview of evaluation

experiment steps.

Figure 8:

Impact of different protection

transformations on symbolic

execution attack.

tures identified by our framework. We built
regression models using these features,
which were able to predict the time needed
by the symbolic execution attack with high
accuracy. This again confirms that our soft-
ware protection evaluation framework has
identified the most relevant code features.

In future work we plan to evaluate our
framework for case studies based on differ-
ent MATE attacks. Moreover we are interest-
ed in applying ML to automatically extract
features relevant for slowing down MATE
attacks, which would automate our soft-
ware protection evaluation framework.

4.3 Extracting and Selecting Program
Features

We use existing tools to extract software
features like code complexity metrics, re-
source usage and SAT features. SAT features
are graph metrics applied to SAT instances
represented as graphs, i.e. each literal is a
node and each disjunction is an edge in the
graph. For example the SAT instance of a
non-obfuscated C program is illustrated in
Figure 9, while the SAT instance of that same
program after obfuscation using Flattening
and Virtualization is illustrated in Figure 10.
Notice that the community structures
(separate groupings of nodes) in the graph
are destroyed by these strong obfuscation
transformations. Since we extracted a total
of 64 code features, we perform recursive
feature selection, which is able to reduce the
number of features to 15, which correspond
to the features identified by our framework
at the end of Section 3.

4.4 Predicting Attack Times via
Regression

Using the 15 features extracted in the previ-
ous step, we perform 10-fold cross validation
using 4 state of the art machine learning (ML)
algorithms: Support Vector Machines (SVM),
Genetic Programming (GP), Random Forrest
(RF) and Neural Networks (NN). Figure 11
shows the normalized relative prediction er-

ror (y-axis) for each of the 4 ML algorithms, in
a cumulative manner for the entire dataset of
programs (x-axis). The maximum error is de-
picted with solid lines while the median error
with dashed lines. It is important to notice
that there are some differences between differ-
ent ML algorithms and that RF has the lowest
prediction error. Moreover, even for 85 % of
all programs the maximum prediction error
of RF is less than 15 % and the median error is
less than 5 %, which we believe is acceptable
for predicting the time needed by a symbolic
execution attack on any given program.

5. Conclusions and Future Work

In this paper we have presented a framework
for evaluating the strength of software pro-
tection against MATE attacks. Our frame-
work formulates attacks as search problems
in order to identify the most relevant code
features that will slow down the attack. To
evaluate our attack we have generated thou-
sands of C programs and protected them
using popular obfuscation transformations.
By recording the time needed by a symbolic
execution based attack to bypass the license
check of all protected programs, we were able
to confirm that our framework has identified
the most relevant code features for MATE at-
tacks. Moreover, we used standard tools to
extract other code features from all the pro-
grams. Recursive feature selection narrowed
down the relevant features to the same fea-

40 Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 41Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks

Figure 9 (top):

Before software protection.

Figure 10 (bottom):

After software protection.

Type of error

R
el

at
iv

e
er

ro
r

Percentage of programs

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Maximum error with Neural Networks

Maximum error with Support Vector Machines

Maximum error with Random Forest

Maximum error with Genetic Programming

Median error with Neural Networks

Median error with Support Vector Machines

Median error with Random Forest

Median error with Genetic Programming

Figure 11:

Comparison of prediction

error of different regression

models.

References

[1]  Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander Pretschner. Code
obfuscation against symbolic execution attacks. In Proc. of 2016 Annual Computer Security Applications
Conference. ACM, 2016.

[2]  Sebastian Banescu, Christian Collberg, and Alexander Pretschner. Predicting the resilience of
obfuscated code against symbolic execution attacks via machine learning. In 26th USENIX Security
Symposium (USENIX Security 17), pages 661–678, Vancouver, BC, 2017. USENIX Association.

[3]   Sebastian Banescu, Martín Ochoa, and Alexander Pretschner. A framework for measuring software
obfuscation resilience against automated attacks. In Software Protection (SPRO), 2015 IEEE/ACM 1st Inter-
national Workshop on, pages 45–51. IEEE, 2015.

[4]  Sebastian-Emilian Banescu. Characterizing the Strength of Software Obfuscation Against Automated
Attacks. Dissertation, Technische Universität München, München, 2017.

[5]  Christian Collberg and Jasvir Nagra. Surreptitious software. Upper Saddle River, NJ: Addision-Wesley
Professional, 2010.
[6]  James P McDermott. Attack net penetration testing. In Proceedings of the 2000 workshop on New
security paradigms, pages 15–21. ACM, 2001.

