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is preserved even after the obfuscation 
transformation.

•	 Tamper-proofing and tamper-detection 
protect the integrity of the code. This 
implies code transformations which add 
integrity checks that continuously verify 
the state or functionality of the code.

•	 Tool-targeted or environment-targeted 
transformations take advantage of weak-
nesses in tools or execution environ-
ments to prevent analysis, e.g. anti-de-
bugging, anti-sandboxing.

•	 Watermarking adds a distinctive pattern 
inside the code, which is hard to detect 
or remove by attackers, but can be easi-
ly recovered by the software developer. 
This pattern is useful to track unauthor-
ized copies of code, that are used by com-
petitors.

1. Introduction

Software protection focuses on defending 
software applications against attackers who 
have access to the (binary) code of the ap-
plication. Two common examples of such 
attackers are malicious end-users of (1) 
websites, who can inspect or tamper with 
the JavaScript code sent by the website or 
(2) games, who can inspect or tamper with 
the machine code of the game executable. 
These malicious end-users are called man-
at-the-end (MATE) attackers, because they 
are recipients of the software applications 
and they control the execution environ-
ment of the application.

Software developers know that some of the 
end-users of their software may be MATE 
attackers, who try to steal their intellectual 
property or try to change the intended be-
havior of the application, e.g. such that they 
no longer need to pay a license or subscrip-
tion fee in order to use the software. There-
fore, many developers employ software 
protection techniques in order to prevent 
or detect MATE attackers who want to in-
spect or tamper with the software. Software  
protection, sometimes also called code-hard-
ening includes dozens of code transforma-
tion techniques which can be grouped in 
the following categories:
•	 Obfuscation transforms the syntax of 

the code such that the result is harder to 
analyze. The functionality of the code 

Sebastian Banescu
Evaluating Software Protection against Automated Reverse  
Engineering Attacks

Sebastian Banescu is an IT Security Specialist 
at BMW AG in Munich, where he is involved 
in various projects regarding the security of the 
connected car against remote attackers, tunning 
garages and malicious car owners. 
In July 2017, he received his PhD, with distinc-
tion, at the Technical University of Munich un-
der the supervision of Prof. Alexander Pretschner. 
The topic of his PhD thesis was to characterize 
the strength of software obfuscation against au-
tomated man-at-the-end attackers.
The end goal of his work was to develop a frame-
work that allows software defenders to easily 
choose which software protections to employ in 
order to protect their software against malicious 
end-users.
Before moving to Germany in 2013, Dr. Banescu, 
received a MSc. in Computer Science and Engi-
neering, “cum laude”, from Eindhoven Univer-
sity of Technology in the Netherlands, and a 
BSc. in Computer Science and Engineering, from  
the Technical University of Cluj-Napoca in  
Romania.

Forschungsbeitrag zu  
Software Schutz

Software protection focuses on defending software applications against ma-
licious end-users, also called man-at-the-end (MATE) attackers, who have 
access to the (binary) code of the application and its execution environment. 
The biggest problem of software developers who want to protect their software, 
is that there are dozens of software protection transformations and it is not 
clear how much effort the attacker will need if certain transformations are 
combined. 
This paper proposes a framework for quantifying the effort needed by MATE at-
tackers against a given protected software. Our framework helps software devel-
opers identify software features which are crucial for MATE attacks and which 
can be transformed by software protection in such a way to make the attack 
more difficult. These features are then used to train regression models, which 
predict how much time the MATE attack will take on a given protected software.



while (a ! = b) goto B1

if (a > b) goto B2return a

b = b – a
goto B0

a = a – b
goto B0

B0:

B1:

B2: B3:

B4:

a = a – b
next = 0

b = b – a
next = 0return a

next = 0

switch (next)

while (1)

B0: B1:

B2:
B3: B4:

if (a ! = b)
next = 1

else
next = 2

if (a > b)
next = 3

else
next = 4

30 Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 31Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks

Moreover, these transformations can be 
applied successively to a given software 
application in various orders, practically 
entailing an unlimited number of differ-
ent versions of that application, which are 
syntactically different, but functionally 
equivalent. In this section, we only describe 
a subset of some of the most popular obfus-
cation transformations, which are used in 
the experiments presented Sections 4: 
•	 Encode literals (EncL) takes constant 

numbers or strings and encodes them 
into other data values, which are con-
verted back to the original value during 
runtime, by one or more decoding func-
tions. For example a constant string val-
ue is split into separately stored ASCII 
values and each value is XOR-ed with a 
constant value. At runtime the reverse 
process is applied to each of the encoded 
characters, in order to obtain the origi-
nal string. 

•	 Opaque predicates (AddO) are complex 
boolean expressions, which are always 
true or always false regardless of the val-
ue of the variables. However, for a MATE 

attacker it is difficult to determine that 
an expression is an opaque predicate. For 
instance, x2 + x = 0 mod 2 is always true, 
regardless of the value of x, because if x 
is even then x2 + x is even and if x is odd, 
then x2 + x is still even. Opaque predi-
cates are generally used in conditional 
statements, where the branch that is nev-
er taken is filled with dead code, which 
cannot be removed by the compiler. 
Moreover, opaque predicates can also be 
updated during runtime (UpdO) to frus-
trate the attacker.

•	 Encode arithmetic (EncA) also called 
mixed Boolean-arithmetic (MBA) takes 
simple arithmetic operations (e.g. addi-
tion, subtraction, multiplication, divi-
sion) or simple Boolean operations (e.g. 
AND, OR, NOR, XOR) involving multiple 
variables and transforms them into func-
tionally equivalent complex expressions 
consisting of multiple arithmetic and 
Boolean operations. For example, x + y 
may be transformed into 2(x   y) – (x + y). 
Moreover, such transformations may 
be applied multiple times successively, 

The top of Figure 1 shows that software 
protection takes a program P as input and 
outputs a protected program P’ having the 
same semantics and protected data and al-
gorithms. If the software is not protected 
well enough, MATE attackers will be able to 
reverse engineer program P’ (bottom of Fig-
ure 1) and achieve their end-goal of extract-
ing secrets or tampering with the software. 
Given enough time and resources a MATE 
attacker will eventually be able to reverse 
engineer any protected software, however, 
software developers only want to raise the 
bar for the MATE attacker such that the task 
of reverse engineering is not economically 
attractive anymore.

For example if the resources needed to by-
pass a license check for a game costs 100 
times more than the license fee, then an 
attacker is more likely to buy the license 
than reverse engineer the game executable. 
The biggest problem of software developers 
is that there are dozens of software protec-
tion transformations and it is not clear how 
much effort the attacker will need to invest 

in reversing the software if certain transfor-
mations are combined.

This paper proposes a framework for quan-
tifying the effort needed by MATE attack-
ers against a given protected software. Our 
framework helps software developers to 
identify software features which are crucial 
for MATE attacks and which must be trans-
formed by software protection in such a way 
to make the attack more difficult. The paper 
also describes a use-case where the attacker
employs a state-of-the-art program analy-
sis technique called symbolic execution to 
extract license keys from obfuscated pro-
grams. These features are then used to train 
machine learning models, which are able to 
predict how much time the attack based on 
symbolic execution will take on a given pro-
tected software.

2. Software Protection Transformations

There are dozens of software protection 
transformations published in literature[5]. 

Figure 1:

Input and output of  

software protection and  

reverse engineering.

Software
Protection

Reverse
Engineering

P

secret data
secret algorithm

P'
PROTEDTED

(secret data,
secret algorithm)

Figure 2: 

Control-Flow-Flattening 

example for a function  

computing the greatest  

common divisor of two  

integers.



32 Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 33Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks

which leads to a highly complex expres-
sion, which is difficult for an attacker to 
simplify.

•	 Control-flow flattening (Flat) takes each 
basic block of a program and puts them 
into different case-clauses of a large 
switch-statement. Figure 2 illustrates flat-
tening applied on a function computing 
the greatest common divisor of two inte-
gers a and b (on the left). After transfor-
mation, the switch-statement (right part of 
Figure 2) is dependent on a control varia-
ble (called next), which is set accordingly 
inside each of the case-clauses, such that 
the original control flow of the program 
is preserved. 

•	 Virtualization obfuscation (Virt) takes 
a sequence of one or more instructions 
and converts it into a new instruction 
having a random opcode and operands. 
Doing this mapping until all the code of 
a program is covered, gives rise to a new 
instruction set architecture (ISA). After-
wards, the code of the input program is 
translated to the new ISA and stored as 
bytecode. An emulator which maps the 
bytecode instructions back to native in-
structions is also generated. The obfus-
cated program consists of the bytecode 
and the emulator. 

The papers which introduce these obfus-
cation transformations, provide ad-hoc 
evaluations of their strength. However, the 
evaluations often refer to different MATE 

attackers, i.e. having different goals and 
employing different program analysis tech-
niques. In this paper we introduce a frame-
work to compare differently protected pro-
grams, including programs protected using 
multiple layers of obfuscation, from the 
point of view of the same MATE attacker.

3. Software Protection Evaluation  
Framework

Our framework (first presented in [4]) is built 
on the premise that the strength of software 
protection is proportional to the effort the 
MATE attacker must spend breaking the 
protected code. In the following we present 
the steps of our general framework for char-
acterizing the strength of software protec-
tion:
1.	 Survey different published approaches 

for achieving the goal of a MATE at-
tacker.

2.	 Model all these approaches as one large 
attack net [6], which is a Petri-net de-
picting the different steps of each at-
tack. The input of the attack net is the 
protected program and the output is 
the information needed by the MATE 
attacker, e.g. the secret key hidden in-
side the obfuscated program.

3.	 Select the best overall attack from the 
attack-net by empirical observations. 
This is facilitated by Petri-nets which 
allow running all attacks in parallel.

4.	 Model the steps of the best attack (rep-
resented as transitions of the Petri-net) 
as search problems. This enables the 
identification of the key parameters 
of the search, i.e. the most important 
parameters that affect the speed of the 
search.

5.	 Map the search parameters to code fea-
tures of the program entered as input 
to the attack net. These are the features 
that must be changed by software pro-
tection transformations, in order to 
make MATE attacks slower.

In the following subsections we describe 
these 5 steps in more detail using the run-
ning example of bypassing license checks 
in protected programs.

3.1 Modeling MATE Attacks as  
Attack Nets

Each MATE attack is split into one or more 
subsequent actions or steps, which are 
called transitions (represented as rectangles) 
inside an attack-net (Petri-net) [6]. Each tran-
sition has at least one input and one output 
place (represented as circles), which hold the 
input and output information, respective-
ly. Two transitions are linked by a common 
place if the output of the former transition 
is the input of the latter transition. Note 
that multiple transitions may share the 
same input or output place, if their input, 
respectively output have the same type. An 

attack-net starts with an input place (also 
called a source), which holds the program 
that is under attack. An attack-net ends 
with an output place (also called a sink), 
which holds the information representing 
the goal of the MATE attacker.

For the purpose of illustrating the steps of 
our framework enumerated above, we con-
sider the MATE attack goal of bypassing the 
license check inside a software application. 
Such a check is meant to enforce the pur-
chase of a license key if users want to use all 
features of a certain software. During our 
literature survey we have identified 5 differ-
ent MATE attack techniques to achieve this
goal, which are illustrated inside the at-
tack-net from Figure 3 and described in the 
following:
1.	 The first attack is to guess the right li-

cense key via Random Testing. This at-
tack may be very expensive if the range 
of the key is large, because all possible 
keys need to be enumerated.

2.	 An alternative attack (described in Sec-
tion 3.2), is to make the input for the 
license key symbolic and then employ 
symbolic execution and SMT-/SAT-solv-
ers in order to find the license key.

3.	 One may also find a license key by 
searching for hard-coded strings inside 
the binary and then trying these val-
ues as license key inputs. However this 
attack will fail if the license key is not 
stored as a printable string or as soon as 
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any string obfuscation transformation 
(e.g. encode literals) is applied.

4.	 Instead of finding the license key an 
attacker could try to find and patch 
all the license checks by applying pat-
tern matching on the disassembly of 
the program, using the assembly code 
representation of the license check. 
However, this attack will fail as soon as 
any obfuscation that breaks the code 
pattern is applied (e.g. virtualization 
obfuscation).

5.	 To be more robust against obfusca-
tion, the MATE attacker could use taint 
analysis to identify the license checks. 
Once the checks are found, they need 
to be disabled via patching, which is 
difficult to automate, due to the mul-
titude of ways in which a check can be 
represented in obfuscated code.

Note that we do not claim that these are all 
possible MATE attacks against bypassing li-
cense checks. However, these are the tech-

niques we uncovered in the literature. If ad-
ditional attacks are uncovered in the future 
they can easily be added to the attack-net 
from Figure 3.

3.2 Symbolic Execution as Best MATE 
Attack

Random testing, the top-most attack in 
Figure 3, does not scale if the license key is 
long and contains alphanumeric charac-
ters. Symbolic execution has problems if 
the license check is a cryptographically se-
cure hash function, because the underlying 
SMT solvers cannot break such hash func-
tions. However, such functions are easy to 
find via pattern matching and the they can 
be patched out. From the short description 
provided in the previous enumeration of 
attacks, we can also notice that the third 
and fourth attacks have significant weak-
nesses when it comes to analyzing obfus-

cated code. The last attack based on taint 
analysis is also problematic due to the fact 
that it does not scale when a large number 
of checks are used.

Using self-developed or existing tools for 
each of these 5 MATE attacks, we empir-
ically experimented with a small set of 
manually developed programs containing 
license checks. Based on these preliminary 
experiments and the previous arguments, 
we determined that the second attack from 
Figure 3, i.e. the attack based on symbolic 
execution is the fastest and most resilient 
to obfuscation. In the following we describe 
how symbolic execution works on a given 
program written in C.

The program in Figure 4 consists of a single 
main function, which takes 3 command 
line arguments as inputs and assigns them 
to variables a, b and c. We mark these 3 var-
iables as symbolic, which means that they 

no longer represent concrete values, but the 
range of values corresponding to their type. 
As a symbolic value is processed by program 
instructions, path constraints are added to 
it. The symbolic execution tree correspond-
ing to this program is illustrated in Figure 5. 
Symbolic execution forks whenever there 
is a branch inside the code, which depends 
on at least one symbolic variable. At every 
fork, the state of the program is cloned to-
gether with the path constraints. The true 
branch state is appended with the con-
straint of the condition evaluating to true, 
while the other branch with the constraint 
evaluating to false. After such forks the path 
constraints are checked by an SMT solver, 
to verify if there is any possible assignment 
of concrete values to the symbolic variables, 
which could satisfy the path constraints. 
If so, the path is continued, otherwise it is 
discarded. Examples of path constraints are 
shown inside rectangles at the bottom of 
Figure 5. Note that values that satisfy these 
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	 1 	 int main (int ac , char * av []) {
	 2 		  int a = atoi (av [1]) ;
	 3 		  int b = atoi (av [2]) ;
	 4 		  int c = atoi (av [3]) ;
	 5
	 6		  if (a > b)
	 7 			   a = a - b
	 8
	 9		  if (b < 1) {
	10	  		  if (c != a) {
	11 				    c = a + b
	12 			   }
	13 			   b = 1;
	14 		  }
	15	
	16 		  return 0;
	17 	 }
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represents different states. From any state, 
one or more actions are possible to be per-
formed on that state, which leads to a differ-
ent state. The first state given in the search 
problem specification is called the initial state 
and it represents the root of the search tree. 
Each action taken in a certain state leads 
to a successor state in the search tree. As 
the search algorithm execution proceeds, the 
search tree keeps expanding, until a goal 
state is reached. The leafs of the search tree 
constitute the fringe. The size of the search 
tree indicates the number of visited states. 
Hence the cost of the search algorithm 
execution is proportional to the size of 
the search tree. The size of the search tree 
strongly depends on the chosen search strat-
egy and its associated heuristic. Cost can be 
measured in terms of space or time.

The cost of a MATE attack is the sum of the 
search problem efforts of solving each step 
of the attack. Therefore, the strength of a 
software protection transformation can be 
quantified w.r.t. the effort increase of the 
MATE attack before and after that trans-
formation is applied. Another advantage of 
formulating MATE attacks as search prob-
lems is that one obtains the code features 
which represent complexity factors for the 
search algorithms. By knowing these fea-
tures, the software developer can apply the 
software protection transformation which 
targets exactly those features in order to 
slow down MATE attacks. For instance, in 

our running example of bypassing a license 
check via symbolic execution, the relevant 
code features are: 
•	 The number of branches and loops de-

pending on symbolic variables, because 
it determines the branching factor of the 
search tree.

•	 The number and complexity of Boolean 
and arithmetic operations, because it 
determines the complexity of the SMT 
queries corresponding to the path con-
straints.

•	 The data types of symbolic variables, be-
cause larger types increase the number of 
possible assignments made by the SMT 
solver to these variables.

4. Evaluation

To confirm that our approach has identified 
the most important code features, we follow 
the 4-step process depicted in Figure 7:
1.	 Generate a representative set of pro-

tected programs with variable values 
for all of the code features.

2.	 Record time needed by the best MATE 
attack and extract the features from the 
programs.

3.	 Select only the relevant features.
4.	 Build a regression model for predicting 

the time needed by the MATE attack 
against any given program.

In the following sections we describe each 
of these steps in more detail. Several of the 

constraints would lead the execution along 
the corresponding path.

If we consider that a license check is also a 
conditional statement dependent on the 
value passed as input as the license key, 
then symbolic execution will be able to find 
the correct value of the license key if we 
mark the license key input as symbolic. The 
symbolic execution will explore all execu-
tion paths and one of these paths contains 
the logic for the license check. The result of 
the SMT solver for that path is equal to the 
correct license key value. This attack was 
first presented by Banescu et al.[3]

3.3 Modeling MATE Attack Steps as  
Search Problems

The different steps of an attack (i.e. transi-
tions of an attack net), can be formulated 
as search problems. The advantage of do-
ing this is that there exists a vast literature 
regarding how to solve and quantify the 
effort of search problems and search algo-
rithms, respectively. 

The anatomy of a search problem and a 
search algorithm is represented in Figure 6. 
The fundamental part is the data structure 
on which the search is executing (e.g. an 
array of bytes representing machine code, a 
graph representing the control-flow graph), 
shown in the top-left corner. During search 
these data structures are annotated to show 
the state of the search. Therefore, the same 
data structure with different annotations, 
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experiments described in the following  
sections are presented in more detail in [2].

4.1 Generating and Protecting Programs

For the purpose of creating a large dataset 
of programs, we have developed a C code 
generator, which was used to generate over 
4500 random C functions having different 
code feature values. All of the generated 
programs mimic the structure of a license 
checker such that we can apply our MATE 
attack based on symbolic execution on each 
of these programs. However, before attack-
ing these programs, we apply the 5 software 
protection transformations described in 
Section 2 and combinations of each pair 
of these transformations. Some transfor-
mations are applied twice in order to check 
the increase in attacker effort. In total we 
obtained 30 syntactically different, but se-
mantically equivalent variants of each of 
the more than 4500 C programs.

4.2 Attacking Protected Programs

When applying the symbolic execution at-
tack to each of the protected program ver-
sions we noticed that it was successful on 
all program variants [1]. However, the attack 
execution times varied greatly as a func-
tion of the obfuscation transformations 
which were applied to protect the program.  
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Figure 8 uses circles to show the average 
slowdown factor of the symbolic execu-
tion based attack (y-axis) on all programs 
obfuscated using different transforma-
tions and combinations thereof (x-axis). 
The left-most tick mark on the x-axis is the 
original program. The other tick marks 
represent obfuscated programs with the 
transformations presented in Section 2. 
Figure 8 also shows the average increase 
in file size (plus signs), the percentage of 
attack execution time spent waiting for 
the SMT solver (solid line and right y-axis 
scale), the average number of queries sent 
to the SMT solver (dashed line) and the av-
erage increase in query size (dotted line). 
The most important observations from  
Figure 8 are that:

•	 Contrary to expectations applying En-
code Literals and Opaque Predicates 
alone, do not affect any of the code fea-
tures we identified by our framework. 
This is because the dynamic nature of 
symbolic execution is able to bypass 
these software protection transforma-
tions.

•	 Virtualization increases the number of 
instructions, hence the number of opera-
tions during program execution.

•	 Control-Flow Flattening increases the 
number of branches, hence the number 
of queries sent to the SMT solver, by in-
troducing more branches.

•	 Encode literals increases the size, hence 
the complexity of the queries sent to the 
SMT solver.

Figure 7 (S. 38): 
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Figure 8: 
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tures identified by our framework. We built 
regression models using these features, 
which were able to predict the time needed 
by the symbolic execution attack with high 
accuracy. This again confirms that our soft-
ware protection evaluation framework has 
identified the most relevant code features. 

In future work we plan to evaluate our 
framework for case studies based on differ-
ent MATE attacks. Moreover we are interest-
ed in applying ML to automatically extract 
features relevant for slowing down MATE 
attacks, which would automate our soft-
ware protection evaluation framework.

4.3 Extracting and Selecting Program 
Features

We use existing tools to extract software 
features like code complexity metrics, re-
source usage and SAT features. SAT features 
are graph metrics applied to SAT instances 
represented as graphs, i.e. each literal is a 
node and each disjunction is an edge in the 
graph. For example the SAT instance of a 
non-obfuscated C program is illustrated in 
Figure 9, while the SAT instance of that same 
program after obfuscation using Flattening 
and Virtualization is illustrated in Figure 10. 
Notice that the community structures 
(separate groupings of nodes) in the graph 
are destroyed by these strong obfuscation 
transformations. Since we extracted a total 
of 64 code features, we perform recursive 
feature selection, which is able to reduce the 
number of features to 15, which correspond 
to the features identified by our framework 
at the end of Section 3.

4.4 Predicting Attack Times via  
Regression

Using the 15 features extracted in the previ-
ous step, we perform 10-fold cross validation 
using 4 state of the art machine learning (ML) 
algorithms: Support Vector Machines (SVM), 
Genetic Programming (GP), Random Forrest 
(RF) and Neural Networks (NN). Figure 11 
shows the normalized relative prediction er-

ror (y-axis) for each of the 4 ML algorithms, in 
a cumulative manner for the entire dataset of 
programs (x-axis). The maximum error is de-
picted with solid lines while the median error 
with dashed lines. It is important to notice 
that there are some differences between differ-
ent ML algorithms and that RF has the lowest 
prediction error. Moreover, even for 85 % of 
all programs the maximum prediction error 
of RF is less than 15 % and the median error is 
less than 5 %, which we believe is acceptable 
for predicting the time needed by a symbolic 
execution attack on any given program.

5. Conclusions and Future Work

In this paper we have presented a framework 
for evaluating the strength of software pro-
tection against MATE attacks. Our frame-
work formulates attacks as search problems 
in order to identify the most relevant code 
features that will slow down the attack. To 
evaluate our attack we have generated thou-
sands of C programs and protected them 
using popular obfuscation transformations. 
By recording the time needed by a symbolic 
execution based attack to bypass the license 
check of all protected programs, we were able 
to confirm that our framework has identified 
the most relevant code features for MATE at-
tacks. Moreover, we used standard tools to 
extract other code features from all the pro-
grams. Recursive feature selection narrowed 
down the relevant features to the same fea-

40   Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks 41Banescu: Evaluating Software Protection against Automated Reverse Engineering Attacks  

Figure 9 (top): 

Before software protection. 

Figure 10 (bottom): 

After software protection.
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Comparison of prediction 

error of different regression 

models.
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