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I. Introduction

Additive manufacturing is driving a revo-
lution in manufacturing. With the help of
such technology, objects can be produced by
successively adding thin layers of material.
Nowadays, this procedure is used to create
a wide variety of goods such as: customized
medical devices, dental and hip implants
or even hearing aid devices. Significant ap-
plication areas of additive manufacturing
are found in aerospace industry. Outcome
is that less material is being used compared
to conventional manufacturing techniques.
Therefore, the production costs are being re-
duced, significant amounts of fuel are saved,
which in turn implies reduction in green-
house gases emission.

Since additive manufacturing is offering to
designers exploration of nearly infinite de-
sign spaces, theimportance of topology opti-
mization is evergrowing. Topology optimi-
zation is a mathematical method for optimal
placementofamaterial withinagiven design
space, boundary conditions, and loads, in
order to satisfy the desired objectives.

In a stage of rapid prototyping, topology
optimization can assist engineers to create
solutions that meet design requirements,
having optimal material usage while not
compromising structural integrity. In re-
cent years a lot of research was invested
in exploring and establishing the theory

of topology optimization. The applica-
tion field of topology optimization has
expanded beyond structural mechanics,
now including fluid flows, acoustics, heat
transfer, and many more. However, most
of the research has been carried out for 2D
models. Due to high computational costs,
performing topology optimization for 3D
models may require hours, or in some cases
even days, which hinders rapid prototyping
design process. Ideally, a designer would
like to have almost instantaneous feedback
when exploring a design space. Not much
research has been carried out with a goal to
improve computational efficiency, as it was
done for establishing the theory of topolo-
gy optimization. Therefore, in this work,
use of multi-core architecture such as GPU
(Graphics Processing Unit) combined with
efficient numerical algorithms is demon-
strated.

Resume:

With development of additive manufacturing, the importance of topology op-
timization is evergrowing. With the help of topology optimization engineers
and designers can create better products while using less material. By doing so,
waste and energy consumption is being reduced, contributing to overall reduc-
tion of greenhouse gas emissions. In this work a fast finite element solver with
application to topology optimization is presented. Combining efficient numer-
ical algorithms and data structures such as geometric multigrid method and
hexahedral meshes, with the state of the art many-core architectures results in

nearly interactive topology optimization process.
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Figure 1:
Topology Optimization
algorithm.

II. Topology Optimization

Algorithmic representation of the topology
optimization process with its key compo-
nents is graphically presented in the Figure 1.
Starting from the initial design, given that
loading conditions are known, displace-
ment and stress analysis is performed. This
valuable information is then used to calcu-
late sensitivity of the structure to a change
in material layout. In order to ensure exist-
ence of a solution, sensitivities must be fil-
tered. Finally, in

the optimizer material layout is redistrib-
uted according to the previously calculated
sensitivity information. This process is re-
peated in an iterative fashion, until there is
no change in the material layout.

Previously mentioned material layout is
controlled with the help of pseudo densities.
These pseudo densities are design variables
assigned to each eleemnt of the computa-
tional domain and with permissible values
p €0, 1]. Element carring value of pseudo
density p =1 signifies material, and p =0
signifies void.

Mathematically formal way of expressing
this optimization problem is given by the
following set of Equations:

e(p) = u"K(p)u

. Vip)
subject t =
subject to s a
K(pju="f

0 < pmin Ep= 1.

minimize
>

where objective function ¢ (p) function is
minimized and it is subjected to a volume
constraint of a given volume fraction a, be-
ing the ratio between the material volume
V (p) and the design domain volume V.
Displacement and force vectors are denoted
respectively u and f. Matrix denoted as K(p)
describes the underlying physical system.
For solving the aforementioned problem,
gradient based optimization methods are
usually being used.
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I1I. Fast Solver

Since the optimization process comes at a
high computational cost of performing the
finite-element method (FEM) analysis at
each optimization step, the main focus of
this work is to develop an efficient solver for
performing FEM analysis.

At this stage of the topology optimization,
displacements and stresses of the structure
subjected to loads are being calculated. Tra-
ditionally, a new computational mesh would
be created at every iteration of the optimi-
zation process, and whole linear system of
equations would be newly assembled and
solved. In the case of highly detailed simula-
tion, number of underlying linear equations
can be in order of millions. This of course, re-
flects negatively on the computational time
necessary to perform topology optimization.

In order to be able to solve problems on a
large scale fast, on every iteration step, fol-
lowing key building blocks are considered:

* Structured Mesh - computations are
performed on structured meshes where
every element is of the same dimension.

* Geometric Multigrid (GMG) Solver -
very efficient linear algebra solver that is
dependent on the computational mesh.

° Immersed Boundary Treatment -
boundaries of a computational domain
are embedded within mesh and accoun-
ted through model equations.

Structured Mesh

In order to perform finite element analysis,
computational domain must be discretized
into elements. During this meshing process,
standard procedure is to fit the shape of each
element to the boundary of a computational
geometry as itis represented in the Figure 2b.

Fitting tetrahedral elements to a geometry
might require a lot of computational effort.
This, of course depends on the shape com-
plexity of the geometry that is being analyz-
ed. In practice, computational geometries
might have very complex shapes, resulting
with meshing that can take hours to com-
plete.

Alternatively, geometry can be discretized

with large number of uniform hexahedral

elements, each having the exact same di-

menstion. Some of the main advantages of

using hexahedral elements are:

* Uniformity of computation - since all
elements are of identical dimensions, sa-
me computational instructions can be
applied to each element.

* No need for re-meshing — regardless of
complexity of a geometry, mesh

* Data structure simplicity — a lot of ele-
ment specific data can be precalculated.

Due to the uniformity of the mesh, obtain-
ing voxels that are embedding the geometry
is done in a parallel way using GPU accelera-

Figure 2:
Different methods of obtain-
ing computational mesh.

(a) Computational geometry.

(b) Tetrahedral mesh of the
computational geometry.

(¢) Hexahedral mesh of
a computational geometry.
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Figure 6 has been remo-
ved and changed the
numbers of the figures
from this point

Figure 3:
Cylinder geometry embedded
withing the hexahedral mesh.

tion. Massive parallelism capability of GPUs
allow creating large meshes consisting of
millions of elements in a matter of millisec-
onds.

Immersed Boundary Treatment

Major drawback of structured hexahe-
dral-type mesh is its inability to accurately
represent geometry which can be seen in the
Figures 2c, and 3.1t can be noticed that geom-
etry is not preserved, rather it is embedded
into the hexahedral mesh. This inacuracy
in discretization leads to degradation of re-
sult accuracy. It is very important to be able
to control such error. In order to do so, im-
mersed boundary methods are used.

Immersed boundary methods are used in or-
der to enforce correct values at the nodes of a
hexahedral mesh, such that their interpola-
tion to the true geometry provides accurate
results. This effect is achieved by augment-
ing the system matrix K(p) with additional
term P(p) stemming from the variational
formulation of the problem, as shown in the
Equation 1.

(K(p) + P(p)u=tf

This augmented system is then being solved
in order to provide more accurate
results.

Geometric Multigrid Solver

One of the most efficient numerical meth-
ods for solving systems of linear equations
are multigrid (MG) methods. It can be the-
oretically shown that multigrid methods
have optimal complexity O(N) for solving
systems of linear equations of N unknowns
for some elliptic types of differential equa-
tions. Two major types of multigrid meth-
ods are to be differentiated: arithmetic mul-
tigrid (AMG) and geometric multigrid (GM).

Arithmetic multigrid methods are not de-
pendent on the computational domain
discretization. This property makes arith-
metic multigrid methods suitable as black-
box solvers. On the other hand, geometric
multigrid methods depend on the geometry
of the mesh and often are not suitable for
unstructured meshes. When working with
structured hexahedral meshes, geometrical
multigrid comes as a natural choice. There-
fore, it represents the core method of this
work.

Multigrid methods are based on creating hi-
crarchies of grids starting from the grid on
which differential equations are discretized.
This grid can be noted as (2, where /1 rep-
resents a characteristic length of a grid ele-
ment, in this case the side of a hexahedral
element. Fach consecutive coarser grid is
constructed by doubling the characteris-
tic length of the previous grid. Hence, the



Gavranovic: GPU Accelerated Multi-Physics FEM Solver for Topology Optimization

preceding grid to the (2, can be denoted as
(,,. In the Figure 4a the process of a grid
construction for a 2D case is demonstrated.
An element of the grid 2 is considered to
be active if it contains at least some part of
the computational geometry. If there exists
at least one active element on (2, which is
covered by the element on the (,,, then
that coarse grid element is active as well.
This coarsening strategy continues until
the coarsest grid O ,n), is reached, where 7 de-
notes the number of levels in the multigrid
hierarchy.

The main goal of the multigrid method is to
obtain solution on the finest mesh level, by
applying corrections transferred from the
solutions on the coarser mesh levels. This
procedure is repeated in an iterative fashion
as shown in the Figure 4b.

GPU Parallelization

Graphics Processing Unit (GPU) is a sin-
gle-chip processor mostly used to accelerate
the rendering of video and graphics con-
tent. With the significant increase in com-
putational performance, over the past few
years, GPUs became important source of ex-
tra compute power in the field of scientific
computing.

Some of the main differences between CPU
and GPU architecture are:

Qh Qh.

smoothing

restriction

interpolation

direct solving
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* a GPU contains thousand of cores that
can handle thousand of threads simulta-
neously while CPU has only a few cores
with a lot of cache memory that can deal
with only a few threads at the same time
(see Figure 5);

* CPU cores are optimized for sequential se-
rial processing, while GPU cores are desi-
gned to handle multiple tasks in parallel.

Carefully selected set of previously men-
tioned algorithms and data structures, al-
lows easy parallelization using GPUs, there-
fore achieving significant speedup com-
pared to CPU execution times.

IV Results

One of the benchmarks for above men-
tioned combination of algorithms is tractor

Figure 4:

Grid hierarchies:

(a) Green represent active
elements of the grid h, while
red squares represent active
elements of the coarser

grid Qg

(b) Mesh coarsening in
V-cycle
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Figure 5 (left):

CPUvs. GPU. GPU uses more
resources for data processing
than for flow control and
cache operations.

This Figure was created on the
basis of illustration provided
by NVIDIA.

lever part. Position of the part in the assem-
bly and its loading conditions have been
displayed in Figure 6. Optimization has been
performed with respect to both loading cas-
es presented in the Figure 6a.

Another standard benchmark geometry that
is often being used to evaluate performance
of topology optimization tools is the jet en-
gine bracket shown in the Figure 7. All tests
were performed using machine equipped
with an Intel Core i7-6900K CPU and
NVidia TITAN X(Pascal) Graphics card.

In the Table 1 results of the optimization
cases are presented. First column represents
the geometry that is being optimized. Next
column denotes the number of elements

Table 1: Optimization parameters and runtime.

used to discretize optimization domain.
Following two columns present number of
iterations until convergence to the solution
with given weight reduction percentage. Fi-
nally, last two columns represent time nec-
essary to perform single FEM analysis for all
the load cases of a given model per iteration,
and a total time necessary for topology opti-
mization process to finish.

V Conclusion and Future Work

Fast simulation coupled with topology op-
timization provides an opportunity for de-
signers to obtain prototypes very fast and
therefore create better and more energy ef-
ficient products.

Total
Geometry Elements Iterations Volun.le ,FEM/ Optimization
Reduction iter (s) R
Runtime (s)
Lever 1.3 x10° 37 80 % 1.6 135,38
Lever 0.47 x 10° 32 80 % 0.6 54.32
Bracket 1.5x10° 35 75 % 21 154.32
Bracket 0.47 x 10° 31 75 % 0.9 74.32
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(6a)

(6b)

(7a)

Presented examples show that the use of ef-
ficient algorithms and data structures such
as structured mesh, geometric multi-grid
solver, and GPU acceleration can deliver
optimized shapes within several seconds.
In comparison, most of the commercially
available tools on the market require hours

(7b)

to compute same benchmarks with compa-
rable quality of the results. Future work will
be focused on further improvement of com-
putational efficiency by the means of adap-
tive mesh refinement. Additionally, use of
fast solver within topology optimization for
different physics will be investigated.

Figure 6:

Optimization of the tractor
lever part:

(a) Part is subjected to

2 load cases

(b) Part within permissible
optimization domain

(c) Optimized part with 80 %
weight reduction compared to
the design domain

Figure 7:

Initial and optimized jet
engine bracket geometries.

(a) Jet engine bracket.

(b) Optimized bracket geome-
try with 75% weight reduction



