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Introduction

Clearly explaining a rationale for a classifica-
tion decision to an end-user can be as impor-
tant as the decision itself. As decision makers,
humans can justify their decisions with nat-
ural language and point to the evidence in
the visual world which led to their decisions.
In contrast, artificially intelligent systems are
frequently seen as opaque and are unable to
explain their decisions. This is particularly
concerning as ultimately such systems fail in
building trust with human users.

Explanations are valuable because they en-
able users to adapt themselves to the situa-
tions that are about to arise while allowing
users to attain a stable environment and have
the possibility to control it. Explanations in
the medical domain can help patients iden-
tify and monitor the abnormal behaviour of
their ailment. In the domain of self-driving
vehicles they can warn the user of some crit-
ical state and collaborate with her to prevent
a wrong decision. In the domain of satellite
imagery, an explanatory monitoring system
justifying the evidence of a future hurricane
can save millions of lives. Hence, a learning
machine that a user can trust and easily op-
erate needs to be fashioned with the ability of
explanation.

While deep neural networks lead to impres-
sive successes, e.g. they can now reliably iden-

tify 1000 object classes [11], argue about their
interactions through natural language [3],
answer questions about their attributes [7]
through interactive dialogues, integrated
interpretability is still in its early stages. In
other words, we do not know why these deep
learning based visual classification systems
work when they are accurate and why they do
not work when they make mistakes. Enabling
such transparency requires the interplay of
different modalities such as images and text,
whereas current deep networks are designed
as a combination of different tools each op-
timising a different learning objective with

Resume:

In Explainable Machine Learning, we study the challenging problem of large-
scale learning with vision and language. We use image labels, i.e. zebra, horse,
etc. when they are available or side information in the form of attributes, i.e
furry, striped, etc. when image labels are not provided. Combining vision and
language in a single framework we aim to learn robust representations general-
izable across different tasks. As user acceptance is likely to benefit from
easy-to-interpret visual and textual rationales allowing them to understand
what triggered a particular behavior, we aim to generate textual justifications
for model decisions in a two-step framework. In the first stage, we use visual
(spatial) attention to train a convolutional network to decisions, e.g. steering
angle while driving. The attention model identifies image regions that poten-
tially influence the network's output. In the second stage, we use a video-to-text
language model to produce textual rationales that justify the model’s decision.
The explanation generator uses a spatiotemporal attention mechanism en-
couraged to match the attention of the decision maker.
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27 A learning machine that a user can trust
and easily operate needs to be fashioned with

the ability of explanation. ¢

extremely weak and un-
interpretable communi-
cation channels. Howev-
er, deep neural networks

Zeynep Akata - draw their power from

their ability to process
large amounts of data in
an end-to-end manner through a feedback
loop with forward and backward processing.
Although interventions on the feedback loop
have been implemented by removing neu-
rons and back propagating gradients, a gen-
eralizable multi-purpose interpretability is
still far from reach.

Apart from the lack of an integrated inter-
pretability module, deep neural networks
require a large amount of labeled training
data to reach reliable conclusions. In particu-
lar, they need to be trained for every possible
situation using labeled data. For instance, the
system needs to observe the drivers behavior
attheredlighttobeable to learn to stop at red
light both in a sunny and rainy weather, both
in daylight and in night, both in fog and in
snow, and so on. This causes a signicant over-
head in labelling every possible situation.
Hence, our aim is to build an explainable
machine learning system that can learn the
meaning of red light and use this knowledge
to identify many other related situations, e.g.
although red light may look differentin dark-
ness vs daylight, the most important aspect
in such a situation is to identify that the ve-
hicle needs to stop. In other words, we would

like to transfer the explainable behaviour of a
decision maker to novel situations.

In summary, we propose an end-to-end
trainable decision maker operating in sparse
data regime with an integrated interpreta-
bility module. Our main research direction
to build such a system is two folds: learning
representations with weak supervision and
generating multimodal explanations of clas-
sification decisions.

Explainability with Limited Supervision

The image classification problem has been
redened by the emergence of large scale da-
tasets such as ImageNet. Since deep learn-
ing reaches above human accuracy in such
datasets, the attention of the computer vi-
sion community has been drawn to Convo-
lutional Neural Networks (CNN). Training
CNNs requires massive amounts of labeled
data; but, in fine-grained image collections,
where the categories are visually very similar,
the data population decreases significantly.
We are interested in the most extreme case
of learning with a limited amount of labeled
data, zero-shot learning, in which no labeled
data is available for some classes.

When it comes to applying a previously
trained deep learning model to a novel task,
the main challenge is how to transfer knowl-
edge from one task to the other without
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having to label many instances of the novel
situation and without having to retrain the
model from scratch. Transterring knowledge
to novel tasks requires learning with limited
supervision. Achieving better-than-chance
performance in these cases requires structure
in the space of decisions, i.e. different deci-
sions must contain similar characteristics
such that they can be associated. We consid-
er the image classification problem where the
task is to annotate a given image with one (or
multiple) class label(s) describing the visual
properties of its most prominent object.

In this research direction, our aim is to build
semantically interpretable features of ob-
jects that are shared among different catego-
ries and specific to a certain class. Semantic

features such as attributes relate different
situations through well-known and shared
characteristics of objects, e.g. a red head is
shared among “cardinals” and “red-headed
woodpeckers”. They also isolate the specific
situation from the decision by providing a
modular representation of the situation, e.g.
a cardinal has a black patch on its face where-
as a red-headed woodpecker does not.

Label Embeddings for Zero-Shot Learn-
ing. Much work in computer vision has
been devoted to image embedding: how to
extract suitable features from an image. We
focus on label embedding: how to embed
class labels in a Euclidean space. We use side
information such as attributes for the label
embedding and measure the compatibility

Figure 1:

Much work in computer vision
has been devoted to image
embedding (left): how to
extract suitable features from
an image. We focus on label
embedding (right): how to
embed class labels in a Euclid-
ean space. We use side in-
formation such as attributes
for the label embedding and
measure the “compatibility”
between the embedded inputs
and outputs with a function F.
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This flower has small, round violet
petals with a dark purple center

@L_lw_m

Generator Network

This flower has small, round violet
petals with a dark purple center

Discriminator Network

Figure 2:

Our text-conditional convolu-
tional GAN architecture. Text
encoding ¢(t) is used by both
generator and discriminator.
It is projected to a lower-di-
mensional space and depth
concatenated with image
feature maps for further stages
of convolutional processing.

between the embedded inputs and outputs
with a function I' whose parameters are op-
timized with ranking loss [1, 2]. Attributes
associate different images and classes for
zero-shot learning. This means that attrib-
utes correspond to high-level properties of
the objects which are shared across multiple
classes, which can be detected by machines
and which can be understood by humans.
Each class can be represented as a vector of
class-attribute associations according to the
presence or absence of each attribute for that
class. Such class attribute associations are of-
ten binary (in our work, we assume that the
class-attribute association matrix is provided
through annotations by an expert user). As
an example, if the classes correspond to an-
imals, possible attributes include has paws,
has stripes or is black. For the class zebra, the
has paws entry of the attribute vector is zero
whereas the has stripes would be one.

To learn novel concepts, a function which
measures the “compatibility” between an
image X and its class attributes associated
with its y can be used. The parameters of
this function are learned on a training set
of labeled samples to ensure that, given an
image, the correct class(es) rank higher than
the incorrect ones. Given a test image, labe-
ling consists in searching for the class with
the highest compatibility score.

Generative Models for Data Augmenta-
tion. An orthogonal approach to zero-shot
learning is to augment data by generating
artificial images using their textual descrip-
tions. In [10] we develop a novel deep archi-
tecture and generative adversarial networks
(GAN) formulation to effectively bridge re-
cent advances in text and image modeling,
translating visual concepts from characters
to pixels. Our approachis to train a deep con-



volutional generative adversarial network
(DC-GAN) conditioned on text features en-
coded by a hybrid character-level convolu-
tional-recurrent neural network. Both the
generator network G and the discriminator
network D perform feed-forward inference
conditioned on the text feature. As shown in
the figure, our text-conditional convolution-
al GAN architecture is composed of a gener-
ater and the discriminator. The text encod-
ing is used by both generator and discrimi-
nator. It is projected to a lower-dimensions
and depth concatenated with image feature
maps for further stages of convolutional
processing. We demonstrate in [10] that
this model can synthesize many plausible
visual interpretations of a given text caption
where the text caption talks about different
visual properties of a bird or a ower image.
We showed disentangling of style and con-
tent, and bird pose and background transfer
from query images onto text descriptions.
This work has been the first work on text to
image generation which lead a large amount
of further research in the recent machine
learning literature. On the other hand, due
to the level of detail missing in the synthetic
images, image features extracted from them
do not improve classification accuracy. Dis-
criminative visual features can be extracted
from: 1) real images, however in zero-shot
learning we do not have access to any real
images of unseen classes, 2) synthetic imag-
es, however they are not accurate enough to
improve image classification performance.
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We tackle both of these

problems and propose 27 An orthogonal approach to zero-shot
a novel attribute condi- learning is to augment data by generating

tional feature generat- articial images using their textual

ing adversarial network descriptions. ¢
formulation in [14], to
generate CNN features
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of unseen classes. This

simplifies the task of the generative model
and directly optimizes the loss on image fea-
tures. The main insight of this model is that
by feeding additional synthetic CNN fea-
tures of unseen classes, the learned classifier
will also explore the embedding space of un-
seen classes. Hence, the key to our approach
is the ability to generate semantically rich
CNN feature distributions conditioned on a
class specific semantic vector e.g. attributes,
without access to any images of that class.
This alleviates the imbalance between seen
and unseen classes, as there is no limit to the
number of synthetic CNN features that our
model can generate. It also allows to direct-
ly train an ad-hoc discriminative classifier
even for unseen classes.

One disadvantage of the GAN-based loss
functions is that they suffer from instability
in training. As a methodological improve-
ment, in [12], we train Variational Autoen-
coders (VAEs) to encode and decode features
from different modalities, e.g. images and
class attributes, and use the learned latent
features to train a zero-shot learning classi-
fier. By explicitly enforcing alignment both

15



16

Akata: Representing and Explaining Novel Concepts with Minimal Supervision

Cape May  e(ys)

Warbler 3 Novel Feature
Generation
(-WGAN)
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Figure 3: in the latent features and in the distribu-  dimensions, as well as explicit distribution

Our any-shot feature generat-
ing network (-VAEGAN-D2)
consist of a feature generating
Variational Auto Encoder
(f-VAE), a feature generating
Wasserstein Generative
Adversarial Network
(fFWGAN) with a conditional
discriminator (D1) and a
transductive feature generator
with a non-conditional dis-
criminator (D2) that learns
from both labeled data of seen
classes and unlabeled data

of novel classes.

tions of latent features learned using differ-
ent modalities, the VAEs enable knowledge
transfer to unseen classes without forgetting
the previously seen ones. As shown in the
figure, our model learns a latent embedding
(z) of image features (x) and class embed-
ding (c(y) of labels y) via aligned VALs opti-
mized with cross-alignment (LCA) and dis-
tribution alignment (LDA) objectives, and
subsequently trains a classifier on sampled
latent features of seen and unseen classes.
The main insight of our proposed model is
that instead of generating images or im-
age features, we generate low-dimension-
al latent features and achieve both stable
training and state-of-the-art performance.
Hence, the key to our approach is the choice
of a VAE latent-space, a reconstruction and
cross-reconstruction criterion to preserve
class-discriminative information in lower

alignment to encourage domain-agnostic
representations.

Finally, we propose a hybrid model [15]
combining the strengths of VAE and GANs
by assembling them to a conditional feature
generating model, that synthesizes CNN
image features from class embeddings, i.e.
class-level attributes. Thanks to its addi-
tional discriminator that distinguishes real
and generated features, our model is able to
use unlabeled data from previously unseen
classes without any condition. The features
learned by our model are disciminative in
that they boost the performance of any-shot
learning as well as being visually and textu-
ally interpretable.
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This bird has
distinctive-looking
brown and white
stripes all over its
body, and its brown

This swimming bird
has a black crown
with a large white
strip on its head, and
yellow eyes.

white beak. tail sticks up
This flower has a Light purple petals This flower is yellow
central white blossom with orange and and orange in color,
surrounded by large black middle green with petals that are
pointed red petals leaves. ruffled along the
which are veined and edges.
leaflike.
Datasets and Results. Fine-grained visual =~ When we look at the the generated images  Figure 4:
categorization is an interesting test-bed for  using these text descriptions. Although the  Several representative
evaluating the generalization ability of the interpolation between sentences “blue bird  examples of the results

learned representations as the objects are
distinguishable only by field experts which
increases the annotation effort, therefore at-
tributes or other source of side information
is required. We choose Caltech UCSD Birds
dataset [13] with 200 classes of bird imag-
es annotated with attributes and collect
additional text-based annotations [9] that
describe the image content specific to the
object. After extracting vectorial representa-
tions from these sentences, all the vectors
that belong to the same class is averaged to
build a class-based representation that are
then used to learn a compatibility function
for label-embedding based zero-shot learn-
ing and as a conditioning variable to gen-
erate image pixels or image features from
scratch.

with black beak” and “red bird with black
beak” may not have a semantic meaning in-
dividually, the embeddings between these
two sentences correspond to semantically
meaningful transitions. In addition that us-
ing powerful generative models, by describ-
ing how the object should look like one can
generate an unlimited number of new data
points for underrepresented classes. This
is remarkable as it is practically impossible
to capture visual data of all the objects and
situations. On the other hand, generative
models provide a means to obtain the miss-
ing data instances with a much lower cost.

from our data collection.
The descriptions almost
always accurately describe
the image, to varying degrees
of comprehensiveness.

Thus, in some cases multiple
captions might be needed to
fully disambiguate the species
of bird category. However, as
we show subsequently, the
data is descriptive and large
enough to support training
high-capacity text models
and greatly improve the
performance of textbased
embeddings for zero-shot
learning.
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Coming back to our starting point of clas-
sification in low-data regimes, the table on
the right demonstrates our per-class top-1
accuracy (the higher the better) on previous-
ly seen classes (s), previously unseen classes
(u) and their harmonic mean (H) on the
bird recognition dataset described above us-
ing (1) the label-embedding method which
learns to associate images and classes with
a compatibility function, (2) a classifier
trained on generated images by text-condi-
tional GAN, (3) a classifier trained on gen-
erated features by text-conditional WGAN,
(4) a classifier trained on generated features
by text-conditional VAE and (5) a classifier
trained on generated features by text-condi-
tional VAE-GAN. These results demonstrate
that indeed generating images using a GAN
may lead to images that miss certain de-
tails required for recognition. On the other
hand, GAN or VAE-based generative models
are able to generate strong and generalizable
visual features of previously unseen classes.

Data u s H

(1) Label-Embedding 23.7 62.8 34.4
(2) With generated images (GAN) 23.8 48.5 31.9
(3) With generated features (GAN) 43.7 57.7 49.7
(4) With generated features (VAE) 63.6 51.6 52.4
(5) With generated features (VAE-GAN) 63.2 75.6 68.9

Explaining Neural Network Decisions

We argue that visual explanations must sat-
isty two criteria: they must be class discrim-
inative and accurately describe a specific im-
age instance, explanations are distinct from
descriptions, which provide a sentence based
only on visual information, and definitions,
which provide a sentence based only on class
information. Unlike descriptions and defini-
tions, visual explanations detail why a cer-
tain category is appropriate for a given image
while only mentioning image relevant fea-
tures. For example, consider a classification
system that predicts a certain image belongs
to the class “cardinal”. A standard captioning
system might provide a description such as
“this is a red bird sitting on a tree branch”.
However, as this description does not men-
tion discriminative features, it could also be
applied to a “vermilion flycatcher”.

Our first attempt in explanation genera-
tion [4] proposes a new model that focuses
on the discriminating properties of the vis-
ible object, jointly predicts a class label, and
explains why the predicted label is appro-
priate for the image. Namely, our visual ex-
planation generating intelligent machines,
a.k.a. agents, learn to fluently justify a class
prediction and mention visual attributes,
which reflect a strong class prior, e.g. “This
is a red headed woodpecker because this
bird has a red head and a pointy beak.”.
To the best of our knowledge, ours is the first
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Itis a Cardinal —J“ N
—

because it is a

with a
red beak and a

Itis not a Vermilion Flycatcher
because it does not have
black wings?

framework to produce deep visual explana-
tions using natural language justications.
Our joint vision and language explanation
model combines classification and sentence
generation by incorporating a loss func-
tion that operates over sampled sentences.
We show that this formulation is able to
focus generated text to be more discrimi-
native and that our model produces better
explanations than a description baseline.
Our results also conrm that generated sen-
tence quality improves with respect to tra-
ditional sentence generation metrics by
including a discriminative class label loss
during training.

The explanation agent in [4] learns to flu-
ently justify a class prediction. However it
may mention visual attributes which reflect
a strong class prior, although the evidence
may not actually be in the image. This is

particularly concerning as ultimately such
agents fail in building trust with human
users. To overcome this limitation, in [5]
we proposed a phrase-critic model to re-
fine generated candidate explanations aug-
mented with flipped phrases which we use
as negative examples while training. At in-
ference time, our phrase-critic model takes
an image and a candidate explanation as
input and outputs a score indicating how
well the candidate explanation is ground-
ed in the image. Our explainable Al agent is
capable of providing counter arguments for
an alternative prediction, i.e. counterfactu-
als, along with explanations that justify the
correct classification decisions. Our model
improves the textual explanation quality
of fine-grained classification decisions on
bird images by mentioning phrases that are
grounded in the image. Moreover, our agent
detects when there is a mistake in the sen-

Figure 5:

Our phrase-critic agent
considers grounded visual
evidence to determine if
candidate explanations are
image relevant. In this exam-
ple, as many cardinals are
red and have a black patch on
their faces, mentioning and
grounding those properties
constitutes an effective fac-
tual explanation, i.e. ration-
alization. Furthermore, in
our framework, informing the
user of why an image does not
belong to another class via the
absence of certain attributes
constitutes a counterfactual
explanation
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“This red bird has
ared beak and a black face. -

“This red bird has
ablack beak and a black face.

Explanation Sampler

A;
attribute
chunker

attribute I ?‘
—| chunker

Explanation Grounder

red bird
black face

4 blackbeak
red bird
.| black face

Phrase-Critic

Figure 6:

Our phrase-critic model
ensures that generated ex-
planations are both class
discriminative and image
relevant. We first sample a
set of explanations, chunk

the sentences into noun
phrases and visually ground
constituent nouns. Our model
assigns a score to each noun
phrase-bounding box pair
and selects the sentence with
the highest cumulative score
judging it as the most relevant
explanation

tence, grounds the incorrect phrase and cor-
rects it significantly better than other mod-
els. Furthermore, human evaluations show
that providing information using clear and
plain language it indeed increases trust. In
the example figure, as many cardinals are
red and have a black patch on their faces,
mentioning and grounding those properties
constitutes an effective factual explanation,
i.e. rationalization. Furthermore, in our
framework, informing the user of why an
image does not belong to another class, i.e.
vermilion flycatcher, via the absence of cer-
tain attributes, i.e. black wings, constitutes
a counterfactual explanation. Similarly,
in [8], we proposed a new model which can
jointly generate visual and textual explana-
tions, using an attention mask to localize
salient regions when generating textual ra-
tionales.

Finally, in the context of self-driving vehi-
cles, we propose a two step framework [6]
generating visual and textual explanations
of driver's behavior. First, we use a visual
(spatial) attention model to train a convo-
lutional network end-to-end from images
to the vehicle control commands, i.e., accel-
eration and change of course. The control-
lers attention identifies image regions that
potentially influence the networks output.
Second, we use an attention-based video-to-
text model to produce textual explanations
of model actions. The attention maps of con-
troller and explanation model are aligned so
that explanations are grounded in the parts
of the scene that matters to the controller.

Visual Explanation Datasets. We propose
visual question answering, activity recogni-
tion and driving explanations as testbeds for



studying explanations because they are chal-
lenging and important visual tasks which
have interesting properties for explanation.
For fine-grained visual classification, in [9]
we collected S sentences for each of the im-
ages which do not only describe the content
of the image, e.g., This is a bird, but also give
a detailed description of the bird, e.g., red
feathers and has a black face patch. Unlike
other image-sentence datasets, every image
in this dataset belongs to a class, and there-
fore sentences as well as images are associated
with a single label. This property makes this
dataset unique for the visual explanation
task, where our aim is to generate sentences
that are both discriminative and class-specif-
ic. Though these sentences are not originally
collected for the visual explanation task, we
observe that sentences include detailed and
fine-grained category specific information.
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27 Our explainable Al agent is capable

of providing counter arguments for an alter-

native prediction, i.e. counterfactuals, along
When ranking human with explanations that justify the correct

annotations by output classification decisions. ¢

scores of our sentence
classifier, we find that
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high-ranking sentences
(and thus more discriminative sentences)
include rich discriminative details.

For example, the sentence “..mostly black
all over its body with a small red and yellow
portion in its wing” has a score of 0.99 for
Red winged blackbird and includes details
specific to this bird variety, such as red and
yellow portion in its wing. As ground truth
annotations are descriptions as opposed to
explanations, not all annotations are guar-
anteed to include discriminative informa-
tion. To generate satisfactory explanations,
our model learns which features are dis-
criminative from descriptions and incorpo-

21
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rate discriminative properties into generat-
ed explanations.

VQA is a widely studied multimodal task that
requires visual and textual understanding
as well as common-sense knowledge. For
complementary VQA pairs that ask the same
question of two semantically similar images
which have different answers in [8] we col-
lected explanations that focus on the impor-
tant factors for making a decision. Addition-
ally, we collected annotations for activity
recognition that explains a variety of cues,
such as pose, global context, and the interac-
tion between humans and objects, e.g., road
biking and mountain biking include similar
objects like bike and helmet, but road biking
occurs on a road whereas mountain biking
occurs on a mountain path. Finally, in [6]
we proposed a dataset with over 6,984 video
clips annotated with driving descriptions,
e.g.,, The car slows down and explanations,
e.g., becauseitisabout to merge with the busy
highway. Our dataset provides a new test-bed
for measuring progress towards developing
explainable models for self-driving cars.

Conclusion

Interpretability and explainability in artifi-
cialintelligence will have increasing impact
in our daily lives. On 10th April 2018, 25
European countries have signed a declara-
tion of cooperation on Al stating that Al can
solve key societal challenges, from sustaina-
ble healthcare to climate change to cyberse-
curity. Clearly, the technology is becoming
a key driver for economic growth through
the digitization of industry and for society
as a whole. However, concerns on trust and
accountability indicate that humans should
remain at the centre of development, de-
ployment and decision making of Al and
with that prevent harmful creation and use
of AI applications as well as help advance
public understanding of Al. This can only
achieved by Al systems that are transparent
in their decision process. In our research we
propose to contribute to the sustainability
and trustworthiness of Al-based solutions
by designing and implementing vigilant Al
systems with improved transparency such
that they are more accountable.
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